Solution for Final in Calculus A

Moad B 2009

1) a) Using L'hopital rule we obtain

$$
\lim _{x \rightarrow 1} \frac{x^{\frac{1}{3}}-1}{x^{\frac{1}{2}}-1}=\lim _{x \rightarrow 1} \frac{\frac{1}{3} x^{-\frac{2}{3}}}{\frac{1}{2} x^{-\frac{1}{2}}}=\frac{2}{3}
$$

b) We have

$$
\lim _{x \rightarrow 0^{+}} x \ln \left(e^{x}-1\right)=\lim _{x \rightarrow 0^{+}} \frac{\ln \left(e^{x}-1\right)}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{e^{x}}{e^{x}-1}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}-\frac{x^{2} e^{x}}{e^{x}-1}=\lim _{x \rightarrow 0^{+}}-\frac{x^{2} e^{x}+2 x e^{x}}{e^{x}}=0
$$

where the second and fourth equality is derived from L'hopital rule.
2) Given $\epsilon>0$ we need to find $\delta>0$ such that $\left|x+\frac{1}{x}-2\right|<\epsilon$ if $|x-1|<\delta$. We have

$$
\left|x+\frac{1}{x}-2\right|=\left|\frac{x^{2}-2 x+1}{x}\right|=\frac{|x-1|^{2}}{|x|}
$$

The equality $|x-1|<\delta$ is equivalent $1-\delta<x<1+\delta$. Hence if we choose $\delta \leq 1$ than we obtain $1<|x|$ or $\frac{1}{|x|}<1$. Hence for such a δ we have $\frac{|x-1|^{2}}{|x|}<|x-1|^{2}$. Choose $\delta<\sqrt{\epsilon}$. Then, if $|x-1|<\delta$ we obtain

$$
\left|x+\frac{1}{x}-2\right|<|x-1|^{2}<\delta^{2}<\epsilon
$$

3) We use the following theorem (See exercise number 9 problem number 5): Let $f(x)$ and $g(x)$ be two functions which are differentiable in (a, b). Assume that $f(a)=g(a)$ and that $f^{\prime}(x)>g^{\prime}(x)$ for all $x \in(a, b)$. Then $f(x)>g(x)$ for all $x \in(a, b)$.

Let $f(x)=\frac{2 x}{1-x}$ and $g(x)=\ln \frac{1+x}{1-x}$. Let $a=0$ and $b=1$. Then $f(0)=g(0)=0$. We have $f^{\prime}(x)=\frac{1}{(1-x)^{2}}$ and $g^{\prime}(x)=\frac{2}{1-x^{2}}$. Then $f^{\prime}(x)>g^{\prime}(x)$ for all $0<x<1$.
4) Differentiating we get $2 y y^{\prime}=4 p$. Hence, at the point $\left(x_{0}, y_{0}\right)$ we have $2 y_{0} m=4 p$ or $y_{0}=\frac{2 p}{m}$. We have $y_{0}^{2}=4 p x_{0}$, or $x_{0}=\frac{y_{0}^{2}}{4 p}$. Plugging $y_{0}=\frac{2 p}{m}$ we get $x_{0}=\frac{p}{m^{2}}$. The
equation of the tangent line is $y-y_{0}=m\left(x-x_{0}\right)$. Plugging the values for x_{0} and y_{0} we get $y-\frac{2 p}{m}=m\left(x-\frac{p}{m^{2}}\right)$, from which the results follows.
5) We have $f^{\prime}(x)=p x^{p-1}(1-x)^{q}-q x^{p}(1-x)^{q-1}=x^{p-1}(1-x)^{q-1}(p-x(p+q))$. Since $p, q \geq 2$, then $f(x)$ is differentiable for all x, and hence the only possible critical points are $x_{1}=0, x_{2}=1, x_{3}=\frac{p}{p+q}$. To determine if the point is a maximum or minimum we check the sign of the derivative. In the interval $0<x<x_{3}$ the derivative is always positive, and in the interval $x_{3}<x<1$ it is always negative. Hence x_{3} is a maximum point. At the point $x_{1}=1$, we get a minimum point if p is even and if p is odd then it is not a minimum or a maximum point. At $x_{2}=1$ we get a minimum point if q is odd and if q is even then the point is not a minimum or a maximum point.
6) It is given that for all $x f(2 x-1)=1-4 x^{2}$. Let $t=2 x-1$. Then $x=\frac{t+1}{2}$. Hence $f(t)=1-4\left(\frac{t+1}{2}\right)^{2}=-t^{2}-2 t$. Since this is true for all t, the function can be written as $f(x)=-x^{2}-2 x$. Hence $(f \circ f)(x)=f\left(-x^{2}-2 x\right)=-\left(-x^{2}-2 x\right)-2\left(-x^{2}-2 x\right)=$ $\left(x^{2}+x\right)\left(2-x^{2}-2 x\right)$.
7) We have $f^{\prime}(x)=3 x^{2}+2 a x+b$ and $f^{\prime \prime}(x)=6 x+2 a$. Since the point $(1,-6)$ is an inflection point, and since the function has second derivative at that point, it follows that $f^{\prime \prime}(1)=0$. Hence $6+2 a=0$ or $a=-3$. Clearly, $f(1)=-6$. Hence $1-3+b-4=-6$, and hence $b=0$.

